You've successfully subscribed to Ulysse Bottello — ML Product Manager
Great! Next, complete checkout for full access to Ulysse Bottello — ML Product Manager
Welcome back! You've successfully signed in.
Success! Your account is fully activated, you now have access to all content.

I'm Ulysse

Let's talk about ML product management

Ulysse Bottello

ROI et Machine Learning: Comment mesurer l'impact business ?

En plus d'être connu pour son service de streaming, Netflix investit depuis des années dans son moteur de recommandation de films et de séries qui leur permet de réduire le churn de 1 milliard de dollars par an. Aujourd'hui le retour sur investissement de leur modèle de Machine Learning et
Ulysse Bottello

How we did guap?

Guap started as a way to onboard everybody on the AI journey, with no entry cost, no friction by expressing your data science project's progress in terms of a business metric. A tool to monitor your ML progress to everyone. We believe that every data scientist should translate their metrics
Ulysse Bottello

Data Scientists: How to get instant buy-in from your org?

Let me tell you a unique story. You’re on the 50th and last floor of a giant building. There are many white shirts and Patek Phillips around the table, no doubt we are at a board meeting. The directors' committee decides that their company should lead the AI innovation
Ulysse Bottello

Comment manager un produit ML à succès ?

Vous l'avez probablement lu à de multiples reprise, mais une récente étude montre que 55% des entreprises n'amène jamais leurs modèles ML en production, quand d'autres prédisent que 87% des projets ML échouent. Tout simplement. Vous pouvez mettre la faute sur votre équipe de Data Science, mais dans la plupart
Ulysse Bottello

How to lead your ML team to success?

You probably read it multiple times already but according to a recent study, 55% of companies never take their models to production. And that’s only if projects are successful - when others predict that 87% of projects fail. You can blame your data team, but in most cases, unsuccessful
Ulysse Bottello

Why guap exist?

Long story short: because the luxury of doing an AI/ML project for the sake of it no longer exists.